OMax
Improvisation & Synchronisation(s)

Synchron’11, November 29th 2011

Benjamin Lévy, Jean-Brice Godet
Overview

• Max/MSP

• OMax
 ‣ Origins & Examples
 ‣ Architecture
 ‣ Factor Oracle

• Perspectives
 ‣ Cadence / Stopping
 ‣ Rhythm / Beat
 ‣ Multi Model / Temporality / Listening
OMax: Origins

• Style Modelling
• Factor Oracle
• Off Line Generation
• Interactive
• Audio Oracle
• Video Sync
Examples
Off Line MIDI

J.S. Bach
Off Line MIDI

Bernard Lubat
Off Line MIDI

Jaco Pastorius
On Line Polyphonic MIDI

Helene Schwarz, May 2007
Architecture
OMax Structure

Input → Detection → Segmentation → Modelling → Generation → Rendering → Output

Learning → Improvising
OMax Functions

Input → Detection → Segmentation → Record

Buffer

Modelling

Controls → Improviser → Scheduler → Renderer → Output

Interface
OMax Modules

Input → Extraction → Segmentation & TimeStamp → Oracle & Data → Impro → Player → Output

Buffer & Transport → Oracle & Data

Graph → Display

ImprovVisu
Factor Oracle
Factor Oracle: Building

Allauzen & Crochemore 1999

abbbaab

aba
Factor Oracle: Building

Allauzen & Crochemore 1999

Function add_letter(Oracle(p = p_1p_2...p_m), \(\sigma \))

1. Create a new state \(m + 1 \)
2. Create a new transition from \(m \) to \(m + 1 \) labeled by \(\sigma \)
3. \(k \leftarrow S_p(m) \)
4. While \(k > -1 \) and there is no transition from \(k \) by \(\sigma \) Do
5.
 Create a new transition from \(k \) to \(m + 1 \) by \(\sigma \)
6.
 \(k \leftarrow S_p(k) \)
7. End While
8. If \((k = -1) \) Then \(s \leftarrow 0 \)
9. Else \(s \leftarrow \) where leads the transition from \(k \) by \(\sigma \).
10. \(S_p(m + 1) \leftarrow s \)
11. Return Oracle(\(p = p_1p_2...p_m\sigma \))

Figure 4. Add a letter \(\sigma \) to Oracle(\(p = p_1p_2...p_m \)) to get Oracle(\(p\sigma \))
Factor Oracle: SLT

Suffix Length Trees
Factor Oracle: Navigation
Assayag & Bloch 2007
Improvisation: Pitch

- State
 - SLT
 - Regions
 - Bound?
 - Taboo
 - Selection
 - GUI
- GUI
 - Attractor
 - Velocity
 - Rhythm
 - Octave
 - Descriptors
 - Weight
 - Probability
 - Event
 - Jump
 - Quality
Improvisation: Spectral
Perspectives
Timing

- Stoping
- Cadences
- Beat
- Rhythm
OMax: Clustering I
Multi-Model
Multi-Temporality
Multi-Temporal Modelling

Input → Detection → Segmentation → Record → Modelling → Buffer

Improviser → Scheduler → Renderer → Output

Improviser → Scheduler → Renderer → Output

Improviser → Scheduler → Renderer → Output
Demo